Estimating the error variance in nonparametric regression by a covariate-matched U-statistic
نویسندگان
چکیده
For nonparametric regression models with fixed and random design, two classes of estimators for the error variance have been introduced: second sample moments based on residuals from a nonparametric fit, and difference-based estimators. The former are asymptotically optimal but require estimating the regression function; the latter are simple but have larger asymptotic variance. For nonparametric regression models with random covariates, we introduce a class of estimators for the error variance that are related to difference-based estimators: covariate-matched U-statistics. We give conditions on the random weights involved that lead to asymptotically optimal estimators of the error variance. Our explicit construction of the weights uses a kernel estimator for the covariate density. AMS 2000 subject classifications. Primary 62G08; secondary 62G07, 62G20.
منابع مشابه
Nonparametric Inference Relative Errors of Difference-Based Variance Estimators in Nonparametric Regression
Difference-based estimators for the error variance are popular since they do not require the estimation of the mean function. Unlike most existing difference-based estimators, new estimators proposed by Müller et al. (2003) and Tong and Wang (2005) achieved the asymptotic optimal rate as residual-based estimators. In this article, we study the relative errors of these difference-based estimator...
متن کاملNon-parametric adjustment for covariates when estimating a treatment effect
We consider a non-parametric model for estimating the effect of a binary treatment on an outcome variable while adjusting for an observed covariate. A naive procedure consists in performing two separate non-parametric regression of the response on the covariate: one with the treated individuals and the other with the untreated. The treatment effect is then obtained by taking the difference betw...
متن کاملEstimating the error distribution in nonparametric multiple regression with applications to model testing
In this paper we consider the estimation of the error distribution in a heteroscedastic nonparametric regression model with multivariate covariates. As estimator we consider the empirical distribution function of residuals, which are obtained from multivariate local polynomial fits of the regression and variance functions, respectively. Weak convergence of the empirical residual process to a Ga...
متن کاملEstimating functionals of the error distribution in parametric and nonparametric regression
We consider estimation of linear functionals of the error distribution for two regression models: parametric and nonparametric, and for two types of errors: independent of the covariate and centered (type I), and conditionally centered given the covariate (type II). We show that the residual-based empirical estimators for the nonparametric type I model remain efficient in the type II model. For...
متن کاملEstimating linear functionals of the error distribution in nonparametric regression
This paper addresses estimation of linear functionals of the error distribution in nonparametric regression models. It derives an i.i.d. representation for the empirical estimator based on residuals, using undersmoothed estimators for the regression curve. Asymptotic efficiency of the estimator is proved. Estimation of the error variance is discussed in detail. In this case, undersmoothing is n...
متن کامل